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Abstract

Numerical results are presented for the energy required to actuate a single member in three large two-dimensional
lattice structures. As expected, the actuation energy, relative to the energy required to stretch a bar, scales with bar
stockiness to the power two for a hexagonal lattice, whose behaviour is bending dominated, but is not greatly affected
by stockiness for a triangulated lattice, whose response is stretching dominated. For a kagome lattice, however, the
relative actuation energy scales with stockiness to the power one. Simple models show that, for the kagome, the at-
tenuation of the deformation with distance from the actuated bar itself depends on the stockiness, and this results in the
unexpected energy scaling; they also show that the energy is approximately equally partitioned between bending and
stretching.
© 2003 Elsevier Ltd. All rights reserved.
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1. Introduction

Recent work (e.g. Wallach and Gibson, 2001; Deshpande et al., 2001b; Brittain et al., 2001) has shown
the feasibility of manufacturing structures that on a micro-scale are repetitive trusses. There is now interest
in using the repetitive trusses as the basis for active structures (Hutchinson et al., 2003; Donev and Tor-
quato, 2003). Individual actuators replace some of the members of the truss: altering the length of these
actuators changes the macroscopic shape of the structure. This paper considers the energy required to
actuate a single member of three different designs of large repetitive two-dimensional truss, and in par-
ticular shows how this energy scales with the stockiness of the members.

The design of a truss with minimal internal resistance to actuation is made considerably simpler if the
truss is assumed to be pin-jointed. Now the way to optimize the structure is clear: the structure should be
statically determinate (and hence not allow the build-up of self-stress), and also kinematically determinate
(and hence not have any mechanisms). Even if the structure is not pin-jointed, the same structures are also
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likely to be optimal, as the energy of deformation only involves bending energy, which for slender struts
requires much less energy than stretching (Deshpande et al., 2001a).

Unfortunately, however, Guest and Hutchinson (2003) have shown that infinite repetitive structures
cannot be simultaneously statically and kinematically determinate. This implies that there cannot be a
simple and obvious solution to the optimal design for actuation. However, in two dimensions, the kagome
truss has been shown to be a promising solution (Hutchinson et al., 2003), as in this case, the existence of
internal mechanisms does not have a detrimental impact on the overall stiffness, or the resistance to
buckling, of the structure.

This paper will consider the energy penalty associated with actuating large repetitive truss structures by
considering the simplest case, the energy required to actuate a single member. The structures examined will
not be pin-jointed, as practical manufacturing requires ‘welded’ joints, rather, the effect of stockiness of the
members will be explored.

Three structures will be considered, each based on a different lattice that has all members the same
length. The first is a fully triangulated structure; the valence of each node is six, and the structure, when
considered as pin-jointed, is clearly statically indeterminate. The second is a hexagonal lattice; the valence
of each node is three, and the structure, when considered as pin-jointed, is clearly kinematically indeter-
minate. Finally the kagome lattice will be considered, which is in some ways an intermediate structure
between these other two; the valence of each joint is four.

The paper is structured as follows. In Section 2, the energy associated with actuating simple finite
structures will be explored, by way of introduction. Section 3 reports finite element results for the energy
penalty associated with actuating a single member in the repetitive truss structures described in the previous
paragraph. Section 4 explores simple models that help to explain the finite element results, and Section 5
then concludes the paper.

2. Actuation of simple finite structures

By way of introduction, this section considers actuating single members in the three structures shown in
Fig. 1. The structures are chosen so that, if considered to be pin-jointed, one is kinematically indeterminate,
one is both statically and kinematically determinate, and one is statically indeterminate. These structures
are simple enough to be analysed analytically using standard techniques of structural mechanics; here a
simple stiffness matrix formulation was used (Livesley, 1964).

For each structure, all bars are assumed to have a cross-sectional area 4, a Young’s Modulus E, and a
radius of gyration for in-plane bending of k, giving an axial stiffness AE and a bending stiffness 4Ek>. These
properties are also taken for the member that is actuated, although in practice, actuating members may well
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Fig. 1. Three simple structures: for each, the energy required to actuate the top member is calculated. If considered to be pin-jointed,
(a) is kinematically indeterminate (it has an obvious shear mechanism), (b) is both statically and kinematically determinate, and (c) is
statically indeterminate (it has a state of self stress).
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have different elastic properties. The structure is assumed to be not subject to any external loads, and
initially unstressed. All calculations are done in a small deformation linear-elastic range. The calculations
are carried out for different values of stockiness, where the stockiness s for each structure is defined as being
s = k/L, where the length L is shown in Fig. 1. No account is taken of the finite size of the nodes. Note that
the definition of stockiness used here is reciprocal to the slenderness commonly used in structural
mechanics.

The calculation of the work done in actuation proceeds by extending the rest length of the actuated bar
by a strain €,. As the rest of the structure is not completely flexible, this causes a (negative) axial tension in
the bar ¢. The work done by the member during this extension is then W = —tLe,/2. If the rest of the
structure was completely rigid, 7o = —AFEe,; we take the work done in this case to be a reference energy,
Wo = (AEL/2)€>. In reporting the results of the calculations, we report the non-dimensional W = W /W,. In
the context of designing an easily actuated structure, we want W to be small.

The results for # for the three finite structures are shown in Fig. 2. For the two structures (a) and (b)
that do not have a pin-jointed state of self-stress, the structure deforms primarily in bending. For a fixed
pattern of deformation, the non-dimensionalised bending energy scales with s2, and for these structures, W
scales with s%.

For structure (c) the results are very different. Here, actuation activates the pin-jointed state of self-
stress, and axial deformation is induced. For a fixed pattern of deformation, non-dimensionalised stretching
energy does not vary with s, and for this structure, W is approximately constant.

These results reinforce the point made in Section 1, that an actuatable structure should be both statically
and kinematically determinate when considered as pin-jointed. For slender structures, both (a) and (b) are
easily actuatable. However (a) has a soft shear mode (a mechanism in the pin-jointed case), and this has two
implications: first, the structure cannot efficiently carry some loads; and second, the soft mode cannot be
actuated by changing the length of any member, as the mode does not involve any of the members changing
in length. Hence, for these structures, (b) is optimal.
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Fig. 2. The energy required to actuate the three structures shown in Fig. 1.
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3. Finite-element results for large lattices

This section will explore how the predictable results from Section 2 are affected if the structure that is
being actuated is essentially infinite. Finite element models are used to model the actuation of large two-
dimensional trusses of three different lattice types: a fully triangulated lattice, a hexagonal lattice, and a
kagome lattice. These lattices are shown in Fig. 3. In all cases, the calculations are carried out twice, once
with only one node fixed (to suppress rigid-body modes), and once with all boundary nodes fixed. This
establishes bounds on the case where the truss is infinite, or, at least, larger than the case considered.

In all cases, the lattice considered is rectangular, with a width of 100 times the individual member length
L, and a height of 60 x Lv/3/2 ~ 52L. The lattice member that is actuated is at the centre of the structure,
and is parallel with the longer dimension of the structure. The finite element program Abaqus (2002) is
used: each bar is modelled with a single Euler-Bernoulli beam element of length L and Young’s Modulus E.
The cross-section is assumed to be round, of radius r, giving a radius of gyration k = r/2; practical
structures may well not have round bars, but as only in-plane linear-elastic bending is considered, the actual

INONONONONINONENININONONONINN
NANNNNNNNININONONONDN,
NAANNNNNNINININONINON,

NANNNNNNNININONONONDN,
AVAVAVAVAVAVAV’VAVAVAVAVAVAVA

NNANNANININONINININININOY,

NANNNNNNNNINONONONDN,

INONINININININININININININ/N/N

VVVVVVVVVVVVVV
VANRVANEVANEWANEVAN

XXX XX XXX
A A AN XXX
A XXX A XXX
D OO0 000E

\/\/\/(\/\/\/

Fig. 3. The central portion of each of the three lattices explored in Section 3; in each case the horizontal strut shown dashed is actuated.
(a) A triangulated lattice, (b) a kagome lattice, and (c) a hexagonal lattice.
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shape of the bars has no effect on the results. The same properties are also applied to the member that is
actuated. The structure is assumed to be not subject to any external loads, and initially unstressed. All
calculations are done in a small deformation linear-elastic range.

For each lattice, results for W are calculated for five different bar radii, giving results for
s =k/L =0.005, 0.015, 0.025, 0.035, 0.045. These stockiness ratios are chosen as they cover the range of
interest for practical applications. For the stockiest bars, the area taken up by nodes will in practice become
an important consideration (this is clearly shown later in Fig. 14), but it is not taken into consideration
here—all bars are assumed to have length L.

The results of the calculations are plotted in Fig. 4, and the mode of deformation of the structures is
shown in Figs. 5-7.

For the triangulated and hexagonal grids, the results are as expected from Section 2. The triangulated
grid is clearly statically indeterminate if pin-jointed; its actuation energy is dominated by stretching, and W
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Fig. 4. The energy penalty W associated with actuating a single rod in a large lattice structure. For each stockiness s, and each
structure, two results are shown, the upper being with the boundary of the grid fixed, the lower with it free.
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Fig. 5. The shape of the central portion of the triangulated truss after a single rod (shown dashed) is actuated. The calculation assumes
small deformations; the deformations shown here are greatly magnified for clarity. The shape shown is for a stockiness ratio s = 0.005,
but the results for the other stockiness ratios considered are indistinguishable. The width of the bars is not to scale.



970 N. Wicks, S.D. Guest | International Journal of Solids and Structures 41 (2004) 965-978

Fig. 6. The shape of the central portion of the hexagonal truss after a single rod (shown dashed) is actuated. The calculation assumes
small deformations; the deformations shown here are greatly magnified for clarity. The shape shown is for a stockiness ratio s = 0.005,
but the results for the other stockiness ratios considered are indistinguishable. The width of the bars is not to scale.

Fig. 7. The shape of the central kagome truss after a single rod (shown dashed) is actuated. The calculation assumes small defor-
mations; the deformations shown here are greatly magnified for clarity. The width of the bars is not to scale. Stockiness ratio (a)
s = 0.005, (b) s = 0.045. Note that the displacement attenuates more quickly in (b).
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Fig. 8. The proportion of the actuation energy taken up in stretching of bars, i,/ . For each stockiness s, and each structure, two
results are shown, the upper being with the boundary of the grid fixed, the lower with it free. Clearly for s = 0.005, the grid used is not
large enough to give a meaningful result for this quantity.

does not depend greatly on s. The hexagonal grid is clearly kinematically indeterminate, and is not capable
of sustaining a state of self-stress if pin-jointed; its actuation energy is dominated by bending, and W scales
with 5.
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The results for the kagome truss are unexpected. Here, w scales with s'. The key to understanding this
result is to realise that the assumption made in Section 2 that W is constant for stretching dominated
modes, but scales with s? for bending dominated modes, depends on the mode of deformation being fixed.
For the kagome, however, the actuator is activating what is an infinitesimal mechanism for the pin-jointed
case, and it can be seen in Fig. 7 that the distance over which the deformation dies away depends on the
stockiness. Thus the mode of deformation itself depends on the stockiness, and simple bending/stretching
scaling cannot be applied.

Some insight into the behaviour of the kagome lattice is given by calculating the proportion of the
actuation energy that is taken up in stretching, as shown in Fig. 8. As expected, for the triangulated lattice
the energy is dominated by stretching, while the hexagonal lattice it is dominated by bending. For the
kagome lattice, however, the energy is approximately evenly distributed between bending and stretching.

The next section will present two simple models to further explain the nature of the deformation of the
kagome truss, and the scaling of W with s'.

4. Simple models for the kagome truss

This section will present two simple models, aimed at understanding why the actuation energy for the
kagome truss scales with stockiness to the power one.

4.1. A transfer matrix model

The deformed lattices in Fig. 7 shows that the deformation of the kagome structure due to the actuation
of a single bar takes place primarily along a narrow corridor parallel with the member being actuated. A
simple model can be generated by considering the deformation of the structure shown in Fig. 9, where the
actuation is constrained to lie in this narrow corridor. Clearly, this model will be too stiff, as the boundaries
that are fully constrained would have some flexibility in the true case. However, we would not expect this to
affect the trend in behaviour with stockiness. Certainly for the pin-jointed case, all deformation occurs
along such a narrow corridor. In other cases, the simplified structure will provide a strict upper bound on
the energy of actuation.

Because of the one-dimensional repetitive nature of the simplified structure, it is possible to use a transfer
matrix approach to find the energy of actuation. The details of this calculation are presented in Appendix
A. The results are presented in Fig. 12, where they are compared with the finite element results from Section
3, and also the results from the smeared stiffness model described next.

4.2. A smeared stiffness model

The simplified model shown in Fig. 9 makes it clear that the only way that the horizontal displacement of
nodes in a horizontal line can attenuate with distance from the actuated bar is through compression of the
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Fig. 9. A simplified model used for calculating the energy of actuation of a kagome truss.
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Fig. 10. (a) A ‘bar in an elastic material’ model. (b) A short element of bar, showing forces applied; u is the relevant stiffness of the
elastic medium, per unit length of the bar. Note that tension is shown positive, even though extension of the actuator causes com-
pressive loads.

horizontal bars; for small deformations, bending cannot change the distance between nodes. Indeed, in the
pin-jointed case, the mechanism actuated by the extension of a bar does not attenuate.

The observation that horizontal bars must compress suggests that a suitable model would be to con-
sider the response of a bar in an elastic medium, as shown in Fig. 10(a). Here the horizontal bar is pre-
served, but the rest of the structure is ‘smeared’ to give a stiffness/unit length of bar of u. x is taken as the
distance from the centre of the actuated bar, where the bar moves horizontally by u(x), and carries a tension
t(x). The use of constant x assumes that the entire structure continues to behave in a linear-elastic manner,
as is assumed throughout this paper. The smeared model will be valid as long as the change in u(x) between
nodes along the horizontal bar is small—this may be expected when the stockiness of the bars is small, and
displacement attenuates slowly, as was seen in Fig. 7(a).

Fig. 10(b) shows a small element of the bar. Equilibrium for this element gives

dr

= () 1)
but as the bar remains elastic, with axial stiffness AE, and strain du/dx

du

t(x) =AE— 2

() = AE G @)
Substituting into (1) gives the governing equation for the model

du  u

a2 E”(x) (3)
for which the general solution, writing ¢ = /u/AE is

u(x) = Pe™ + Qe 4)

The solution of (4) can be completed by incorporating the boundary conditions. As x — oo, © remains
finite, which implies O = 0. At x = 0, we want the displacement be half of the extension of the central bar,
u, =¢€,L/2, and so P = ¢,L/2, giving a solution

L .
ulx) = %e"" (5)

To find the work done by the central force f/, we have to find an expression for the tension in the rod.

Substituting (5) into (2) gives

—cAEe,L
f(x) = 5= (6)
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and so

fi=—i0) =55 )

Once the central force is known, it is possible to calculate the work done by (both sides) of the central bar
as
_&Lf]  cAEEL?

V== 4 ®)

and hence the non-dimensional energy W is given by

I;\V:K: w cL

Wo (AEL/2)E 2 ©)

Thus we have a complete solution for the model, except that we do not have a suitable value for y and
hence ¢. However, a suitable value can be found by considering the forces required for a uniform dis-
placement of the bar horizontally by u.. For the smeared model, the force on a bar of length L is given by

S = nLu, (10)

The equivalent force for the simplified model (Fig. 9), can be found by considering the repetitive defor-
mation shown in Fig. 11. A straightforward structural calculation, now assuming that the bars are axially
rigid, gives

48ET
f:Tuc (11)

Equating (10) and (11) gives a suitable value for u

o ABEL_ASEAR _434ES

Lt L4 L (12)
and hence
_[r 43 (13)
AE L
And so the non-dimensional energy of actuation is given by
W =23s (14)

This result is plotted in Fig. 12.

Fig. 11. The simplified kagome model, with all of the central nodes displaced to the right by u. (and up or down as appropriate by
u./+/3, preserving axial lengths).
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Fig. 12. A comparison of the predictions for the energy required to actuate a single member of a kagome truss.

4.3. Discussion

The results for both of the models described are compared with the computational results in Fig. 12. It
can be seen that both models show that the non-dimensionalised energy of actuation scales with s'. The
transfer matrix model actually gives an upper bound on the energy of actuation, as it gives a solution for the
case where the nodes around the ‘corridor’ are fully fixed, rather than having some flexibility. For small
stockiness, both models agree.

Both models show that the basic characteristic that leads to W scaling with s!, which is that the mode of
deformation is not fixed, but rather the attenuation of displacement with distance depends on s.

An interesting calculation that can be made with the smeared stiffness model is to work out where the
energy of actuation is stored. The energy stored in stretching of the central rod is given by

o0 2 o0 _ 2 272
VVCS:Q,X/ AE<du> dX:/ AE< CZEaLe—cx> dx:ﬂ:K (15)
0 0

2 \dx 8 2

where W is the actuation energy given by (8). Thus the model shows that half of the energy goes into
stretching of the central rod, and the other half goes into bending of the structure, which agrees with the
approximately equal division of bending and stretching energy found from the finite element models,
plotted in Fig. 8. In fact, a small proportion of the deformation of the rest of the structure will also be by
stretching rather than bending, which explains why the finite element results show that in total, slightly
more than half the energy is stored in stretching.

It would not be difficult to make the models presented more accurate. A more complex transfer matrix
model could be devised that would take a wider corridor, and hence better model the stiffness. Similarly, a
more accurate value of f could be found for the smeared model. But this added complexity would not alter
the basic result, that  scales with s'. Rather, it would lower the energy of actuation predictions to give
closer agreement with the numerical results.
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5. Conclusion

It is known that, for bending dominated structures, the energy required to actuate a single bar, relative to
the energy required to stretch that bar, W, scales with stockiness, s, to the power 2, while for stretching
dominated structures, W is independent of s. Computations presented here, however, show the interesting
result that the energy required to actuate a large kagome truss scales with s'.

The energy scaling for the kagome truss is anomalous because the mode of deformation itself depends on
the stockiness, and simple models can show that this leads to W scaling with s'. The energy of actuation is
approximately equally partitioned between bending and stretching.

The scaling of W with s depends crucially on the existence of a line of straight bars which must
compress when one member is extended, and hence the deformation cannot be entirely dominated by
bending. However, as the structure deforms, this line of straight bars bends, and it seems likely that the
structure will become bending dominated, with a corresponding drop in stiffness. This important non-linear
behaviour is the subject of continuing work.
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Appendix A. Kagome transfer matrix model

Because of the one-dimensional repetitive nature of the simplified structure shown in Fig. 9, it is possible
to use a transfer matrix approach to find the energy of actuation (Karpov et al., 2002). Consider a typical
section of the structure, shown in Fig. 13. A stiffness matrix can be written that relates displacements at the
nodes d(n) = [d(n),,d(n),, 0(n)]" to the work-conjugate forces f(n) = [f(n)x,f(n)y,m(n)]T, where displace-
ments are only allowed at nodes n — 1, n, and n + 1:

Ko Ki 07[dn—1) f(n—1)
Kl K, K d(n) | =1 f(n) (A.1)
0 K K| |[d@n+]1) f(n+1)

The individual matrices Ky and K; can be found by standard methods (Livesley, 1964).

\ dn-1), d(nt1),
,% 8(n—1), dn), ,% 0(nt1),

d(n-1), o(n), S d(nt1),
d(n)

o4

Fig. 13. An element of the kagome simplified model, used for calculating a transfer matrix for the structure. Note the alternating
direction of the y-direction and rotation at the nodes; this is to take advantage of the plane of glide reflection for the structure.
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We are interested in the case where the nodal loads are zero; taking the central three equations and
setting f(n) = 0 gives

Kld(n — 1)+ Ked(n) + Kid(n +1) =0 (A.2)

In this case, K| is invertible, except in the zero-stockiness limit (when the more advanced methods described
in Karpov et al. (2002) can be used), and thus it is straightforward to find the displacements at node n + 1 in
terms of the displacements at nodes » and n — 1.

din+1) = K 'K{d(n — 1) — K;'Kod(n) (A.3)

Thus we write a state vector

x(n) = [ d(i(fr)l)} (A4)
and can write a governing equation x(n) = Hx(n — 1):

P e e
where I is a 3x 3 identity matrix. Hence

ne L ) (o)

An cigenvector—cigenvalue decomposition of H gives useful information about the response of the
structure. For this structure, H has a full set of eigenvectors u, ...us, with corresponding eigenvectors
A1 ... ¢ arranged in descending order A = 1, = A3 = 1 = )4 = A5 = J¢. The eigenvectors come in three sets
of reciprocal pairs, u; and ug, u; and us, and u; and uy. The eigenvalues satisfy 4,1¢ = 1,45 = 1374 = 1: both
eigenvectors in each reciprocal pair represent exactly the same mode of deformation, but in one case de-
caying when moving from right to left, and in the other case decaying when moving from left to right. For
example, the modes associated with eigenvectors u; and w4 are illustrated in Fig. 14. These are the modes
that correspond to a mechanism in the rigid-body case; the other modes die away much more quickly.

Because H has a full set of eigenvectors, any state vector, for instance x(1), can be written in terms of the
eigenvectors, written as a matrix U = [u, up, u3, uy, us, ug, ]T:

x(1) = Uc (A7)

where ¢ is a vector of six unknown coefficients.

vV _\/

Fig. 14. Two of the eigenmodes, (a) uy and (b) us, for the simplified kagome structure when the stockiness s = 0.045. The width of the
bars is shown to scale for the case when the bars have a circular cross-section; the bars are in fact rather stocky, and hence the de-
formation dies away relatively quickly. The finite size of the nodes is neglected, which is obviously rather unrealistic in this case.
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Now that the eigenmodes of the structure have been calculated, the next step is to consider appropriate
boundary conditions. We shall consider the structure to the right of the actuated bar. As we are considering
that the structure is infinite, we want to ensure that we only consider modes that decay, i.e.

x(n) —0 asn— o0 (A.8)
Thus, considering the general form in (A.7), only the coefficients corresponding to the decaying eigen-
modes, ug, us and ug will be non-zero. It will be helpful later to partition U into inflating (i) and decaying (d)
modes, and hence we rewrite (A.7) as

_ d(l) _|Ua Ua C;
x(1) = [ d(zﬂ - [U vl (A9)
where the submatrices U;; etc. are all 3x 3.
The next step is to consider appropriate central boundary conditions to calculate the energy stored by

actuating one horizontal member. A model for the centre of the structure is shown in Fig. 15. A stiffness
matrix can be written that relates displacements at the central node, d' = [d’,d’,0']", and at nodes 1 and 2,

to the work-conjugate forces, where displacements are only allowed at thege ﬁodes:
K, K 0 d f'
KT K, K/ ||d(1)|=][f(]) (A.10)
0 K Kol [d?2) £(2)

The matrices Kj, K| and K’ can be found by standard methods, and K, and K; are the same matrices as
those given for the general model in (A.1).

We assume that all nodes, except the central node, carry no load. At the central node, we impose a
horizontal displacement of half of the extension of the central bar, d. = ¢,L/2, and symmetry conditions
imply that there is no rotation, ¢ = 0, and no vertical force, /; = 0. The displacements at nodes 1 and 2 are
given by (A.9), where we only consider the decaying modes, and hence ¢; = 0. Thus, (A.10) can be rewritten
(without the equations of equilibrium at node 2, which are not required) as

eL/2

K, K 0 d, ]g
2
2 1 _
[K’lT KE) KI} 0 - m' (A'll)
Uaicq 0
Uancq

Fig. 15. The centre of the simplified kagome model. Extension of the rest length of the central bar by ¢,L is modelled by setting
d, = €,L/2, whilst also imposing suitable symmetry conditions—no rotation, and no vertical force at this central point.
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which can be rearranged as

, , €l/2 Sl
K2 KlUdl d 0
, y = A.12
KT KyUs+KUp 0 m' ( )
Ca 0

Eq. (A.12) gives six equations for the six unknowns in the problem, the central horizontal force, f], the
central moment m', the central vertical displacement, d;, and the coeficients of the three decaying modes,
(= [c4,c5,c6]T, and can, with some rearrangement, be solved for these unknowns. In particular, it is
possible to find the central force, f;.

Once the central force is known, it is possible to calculate the work done by (both sides) of the central bar
as £ =2 x ,Lf]/2. The results of this calculation are presented in Fig. 12.

References

Abaqus version 6.3, 2002. Hibbit, Karlsson & Sorenson, Inc., Pawtucket RI, USA.

Brittain, S.T., Sugimura, Y., Schueller, O.J.A., Evans, A.G., Whitesides, G.M., 2001. Fabrication and mechanical performance
of a mesoscale space-filling truss system. Journal of Microelectromechanical Systems 10, 113-119.

Deshpande, V.S., Ashby, M.F., Fleck, N.A., 200la. Foam topology bending versus stretching dominated architectures. Acta
Materialia 49, 1035-1040.

Deshpande, V.S., Fleck, N.A., Ashby, M.F., 2001b. Effective properties of the octet-truss lattice material. Journal of the Mechanics
and Physics of Solids 49, 1747-1769.

Donev, A., Torquato, S., 2003. Energy-efficient actuation in infinite lattice structures. Journal of the Mechanics and Physics of Solids
51, 1459-1475.

Guest, S.D., Hutchinson, J.W., 2003. On the determinacy of repetitive structures. Journal of the Mechanics and Physics of Solids 51,
383-391.

Karpov, E.G., Dorofeev, D.L., Stephen, N.G., 2002. Characteristic solutions for the statics of repetitive beam-like trusses.
International Journal of Mechanical Sciences 44, 1363-1379.

Hutchinson, R.G., Wicks, N., Evans, A.G., Fleck, N.A., Hutchinson, J.W., 2003. Kagome plate structures for actuation. International
Journal of Solids and Structures 40, 6969-6980.

Livesley, R.K., 1964. Matrix Methods of Structural Analysis. Pergamon Press Ltd.

Wallach, J.C., Gibson, L.J., 2001. Mechanical behaviour of a three-dimensional truss material. International Journal of Solids and
Structures 38, 7181-7196.



	Single member actuation in large repetitive truss structures
	Introduction
	Actuation of simple finite structures
	Finite-element results for large lattices
	Simple models for the kagome truss
	A transfer matrix model
	A smeared stiffness model
	Discussion

	Conclusion
	Acknowledgements
	Kagome transfer matrix model
	References


